Sains Malaysiana 53(7)(2024): 1645-1660

http://doi.org/10.17576/jsm-2024-5307-13

 

Treatment of the Textile Wastewater using Malaysian Ganoderma lucidum Mycelial Pellets

(Rawatan Air Sisa Tekstil menggunakan Pelet Miselium Ganoderma lucidum Malaysia)

 

ZARIMAH MOHD HANAFIAH1, AMMAR RADZI AZMI1, ZUL ILHAM2, WAN HANNA MELINI WAN MOHTAR3, SARINA ABDUL HALIM-LIM4, AYU LANA NAFISYAH5, PAU-LOKE SHOW6 & WAN ABD AL QADR IMAD WAN-MOHTAR1,5,*

 

1Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of   Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia

2Environmental Science and Management Program, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia

3Department of Civil Engineering, Faculty of Engineering and Build Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

4Operational and Quality Management Unit, Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

5Department of Aquaculture, Faculty of Fisheries and Marine, Universitas Airlangga, Campus C, UNAIR Mulyorejo, Surabaya, East Java 60115, Indonesia

6Chemical and Petroleum Engineering, Khalifa University of Science and Technology, P O Box 127788, Abu Dhabi, UAE

 

Received: 29 February 2024/Accepted: 10 June 2024

 

Abstract

Purification of textile wastewater using biomass and in particular different fungi is gaining exponential interest to minimize the impacts of current physical-chemical and biological wastewater treatment by-products. This study investigates the potential of Malaysian Ganoderma lucidum mycelium pellets (GLMP) for the decontamination of wastewater samples received from a commercial textile manufacturer. All studies were performed under ambient temperature (26-35 ℃) and unsterilized conditions using a simple bioreactor design (stirred batch bioreactor) for a more practical assimilation of the current available wastewater treatment process system. The optimal conditions of adsorption by GLMP were determined by variation effects of adsorbent concentration (0, 8.75, 12.5 and 25 g/L), pH (unadjusted 7.10 – 8.22, 4 and 6), and wastewater dilution factor (1:0, 1:4, and 2:3, v/v). This method was proved to be effective in both decolorization and chemical oxygen demand (COD) reduction, simultaneously. The most significant percentage of decolorization observed was 77.24% in a 72 h treatment, whereas COD reductions were 78.32% in a 36 h treatment. The present study fits both Langmuir and Freundlich adsorption isotherms as the values of R2 both model were close to 1, indicating the favorable adsorption of dyes towards Malaysian GLMP.

 

Keywords: Bio-adsorption; COD; decontamination; dyes; Ganoderma lucidum; textile wastewater

 

Abstrak

Pembersihan air sisa tekstil menggunakan biojisim dan khususnya kulat yang berbeza semakin mendapat minat untuk meminimumkan impak produk sampingan yang terhasil daripada rawatan air sisa semasa secara fizikal-kimia dan biologi. Penyelidikan ini mengkaji potensi pelet miselium Ganoderma lucidum dari Malaysia (GLMP) untuk mengenyah lumuskan sampel air sisa yang diterima daripada pengeluar tekstil komersial. Semua kajian dilakukan di bawah suhu ambien (26-35 ℃) dan keadaan tidak disterilkan menggunakan reka bentuk bioreaktor ringkas (bioreaktor kelompok berpengaduk) untuk simulasi yang lebih praktikal bagi sistem proses rawatan air sisa yang sedia ada. Keadaan optimum penjerapan oleh GLMP ditentukan oleh kesan variasi kepekatan penjerap (0, 8.75, 12.5 dan 25 g/L), pH (tidak diselaras 7.10 - 8.22, 4 dan 6), dan faktor pencairan air sisa (1:0, 1:4, dan 2:3, v/v). Kaedah ini terbukti berkesan dalam kedua-dua penyahwarnaan dan pengurangan permintaan oksigen kimia (COD), secara serentak. Peratusan penyahwarnaan yang paling ketara diperhatikan ialah 77.24% dalam rawatan 72 jam, manakala pengurangan COD adalah 78.32% dalam rawatan 36 jam. Kajian ini sesuai dengan kedua-dua model isoterma penjerapan Langmuir dan Freundlich kerana nilai R2 kedua-duanya adalah hampir 1, menunjukkan penjerapan yang terbaik bagi pewarna terhadap GLMP Malaysia.

 

Kata kunci: Air sisa tekstil; bio-penjerapan; COD; mengenyah lumuskan; Ganoderma lucidum; pewarna

 

REFERENCES

Abdulsalam, K.A., Amodu, B.H., Fakorede, O.K., Adelowo, J.M., Onifade, A.P., Olowosaga, F.C., Omikunle, O.D. & Akintayo, B. 2020. Optimized sorption of methyl orange using functionalized carob plant pod. J. Chem. Soc. Nigeria 45(5): 1020-1026.

Ahsan, Z., Kalsoom, U., Bhatti, H.N., Aftab, K., Khalid, N. & Bilal, M. 2021. Enzyme-assisted bioremediation approach for synthetic dyes and polycyclic aromatic hydrocarbons degradation. Journal of Basic Microbiology 61(11): 960-981. https://doi.org/10.1002/JOBM.202100218

Al-Ghouti, M.A. & Da’ana, D.A. 2020. Guidelines for the use and interpretation of adsorption isotherm models: A review. Journal of Hazardous Materials 393: 122383. https://doi.org/10.1016/J.JHAZMAT.2020.122383

Asadollahzadeh, M., Mohammadi, M. & Lennartsson, P.R. 2023. Fungal biotechnology. In Current Developments in Biotechnology and Bioengineering, edited by Taherzadeh, M.J., Ferreira, J.A. & Pandey, A. Elsevier. pp. 31-66. https://doi.org/10.1016/B978-0-323-91872-5.00006-5

Bibbins-Martínez, M., Juárez-Hernández, J., López-Domínguez, J.Y., Nava-Galicia, S.B., Martínez-Tozcano, L.J., Juárez-Atonal, R., Cortés-Espinosa, D. & Díaz-Godinez, G. 2023. Potential application of fungal biosorption and/or bioaccumulation for the bioremediation of wastewater contamination: A review. Journal of Environmental Biology 44(4): 135-145. https://doi.org/10.22438/JEB/44/2/MRN-5093

Birgani, P.M., Ranjbar, N., Abdullah, R.C., Wong, K.T., Lee, G., Ibrahim, S., Park, C., Yoon, Y. & Jang, M. 2016. An efficient and economical treatment for batik textile wastewater containing high levels of silicate and organic pollutants using a sequential process of acidification, magnesium oxide, and palm shell-based activated carbon application. Journal of Environmental Management 184: 229-239. https://doi.org/10.1016/J.JENVMAN.2016.09.066

Chen, S.H. & Yien Ting, A.S. 2015. Biodecolorization and biodegradation potential of recalcitrant triphenylmethane dyes by Coriolopsis sp. isolated from compost. Journal of Environmental Management 150: 274-280. https://doi.org/10.1016/J.JENVMAN.2014.09.014

Cör Andrejč, D., Knez, Ž. & Knez Marevci, M. 2022. Antioxidant, antibacterial, antitumor, antifungal, antiviral, anti-inflammatory, and nevro-protective activity of Ganoderma lucidum: An overview. Frontiers in Pharmacology 13: 934982. https://doi.org/10.3389/FPHAR.2022.934982/BIBTEX

Correa, L.O., Bezerra, A.F.M., Honorato, L.R.S., Cortez, A.C.A., Souza, J.V.B. & Souza, E.S. 2021. Amazonian soil fungi are efficient degraders of glyphosate herbicide; novel isolates of Penicillium, Aspergillus, and Trichoderma. Brazilian Journal of Biology 83: e242830. https://doi.org/10.1590/1519-6984.242830

de Farias Silva, C.E., da Silva Gonçalves, A.H. & de Souza Abud, A.K. 2016. Treatment of textile industry effluents using orange waste: A proposal to reduce color and chemical oxygen demand. Water Science and Technology 74(4): 994-1004. https://doi.org/10.2166/wst.2016.298

Espinosa-Ortiz, E.J., Rene, E.R. & Gerlach, R. 2022. Potential use of fungal-bacterial co-cultures for the removal of organic pollutants. Critical Reviews in Biotechnology 42(3): 361-383. https://doi.org/10.1080/07388551.2021.1940831

Guo, G., Li, X., Tian, F., Liu, T., Yang, F., Ding, K., Liu, C., Chen, J. & Wang, C. 2020. Azo dye decolorization by a halotolerant consortium under microaerophilic conditions. Chemosphere 244: 125510. https://doi.org/10.1016/J.CHEMOSPHERE.2019.125510

Gupta, V. & Raviya, M.R. 2022. Microbial degradation of azo dyes using bacteria. In Microbial Remediation of Azo Dyes with Prokaryotes. 1st ed., edited by Shah, M.P. Boca Raton: CRC Press. pp. 183-197.

Hadibarata, T., Adnan, L.A., Yusoff, A.R.M., Yuniarto, A., Rubiyatno, Ahmad Zubir, M.M.F., Khudhair, A.B., Teh, Z.C. & Naser, M.A. 2013. Microbial decolorization of an azo dye reactive black 5 using white-rot fungus Pleurotus eryngii F032. Water, Air, and Soil Pollution 224(6): 1-9. https://doi.org/10.1007/S11270-013-1595-0/METRICS

Hanafiah, Z.M., Wan Mohtar, W.H.M., Hasan, H.A., Jensen, H.S., Klaus, A., Sharil, S. & Wan-Mohtar, W.A.A.Q.I. 2022. Ability of Ganoderma lucidum mycelial pellets to remove ammonia and organic matter from domestic wastewater. International Journal of Environmental Science and Technology 19(8): 7307-7320. https://doi.org/10.1007/S13762-021-03633-3/METRICS

Idris, A., Hashim, R., Rahman, R.A., Ahmad, W.A., Ibrahim, Z., Razak, P.R.A., Zin, H.M. & Bakar, I. 2007. Application of bioremediation process for textile wastewater treatment using pilot plant. International Journal of Engineering and Technology 4(2): 228-234.

Ikehata, K. 2015. Use of fungal laccases and peroxidases for enzymatic treatment of wastewater containing synthetic dyes. Green Chemistry for Dyes Removal from Waste Water: Research Trends and Applications pp. 203-260. https://doi.org/10.1002/9781118721001.CH6

Karim, M.E., Dhar, K., Moniruzzaman, M., Hossain, M.U., Das, K.C. & Hossain, M.T. 2020. Decolorization of synthetic dyes by Aspergillus flavus strain EF-3 isolated from textile dyeing sludge. Bangladesh Journal of Microbiology 37(1): 7-13. https://doi.org/10.3329/BJM.V37I1.51203

Khouni, I., Marrot, B. & Ben Amar, R. 2012. Treatment of reconstituted textile wastewater containing a reactive dye in an aerobic sequencing batch reactor using a novel bacterial consortium. Separation and Purification Technology 87: 110-119. https://doi.org/10.1016/J.SEPPUR.2011.11.030

Koul, B. & Farooq, B. 2020. Mycotechnology: Utility of fungi in food and beverage industries. In New and Future Developments in Microbial Biotechnology and Bioengineering, edited by Singh, J. & Gehlot, P. Elsevier. pp. 133-153. https://doi.org/10.1016/B978-0-12-821007-9.00012-7

Lellis, B., Fávaro-Polonio, C.Z., Pamphile, J.A. & Polonio, J.C. 2019. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation 3(2): 275-290. https://doi.org/10.1016/J.BIORI.2019.09.001

Li, L., Liang, T., Zhao, M., Lv, Y., Song, Z., Sheng, T. & Ma, F. 2022. A review on mycelial pellets as biological carriers: Wastewater treatment and recovery for resource and energy. Bioresource Technology 355: 127200. https://doi.org/10.1016/J.BIORTECH.2022.127200

Mohd Hanafiah, Z., Wan Mohtar, W.H.M., Abu Hasan, H., Jensen, H.S., Klaus, A. & Wan-Mohtar, W.A.A.Q.I. 2019. Performance of wild-Serbian Ganoderma lucidum mycelium in treating synthetic sewage loading using batch bioreactor. Scientific Reports 9: 16109. https://doi.org/10.1038/s41598-019-52493-y

Mooralitharan, S., Mohd Hanafiah, Z., Abd Manan, T.S.B., Muhammad-Sukki, F., Wan-Mohtar, W.A.A.Q.I. & Wan Mohtar, W.H.M. 2023. Vital conditions to remove pollutants from synthetic wastewater using Malaysian Ganoderma lucidum. Sustainability (Switzerland) 15(4): 3819. https://doi.org/10.3390/su15043819

Mostafa, A.A.F., Elshikh, M.S., Al-Askar, A.A., Hadibarata, T., Yuniarto, A. & Syafiuddin, A. 2019. Decolorization and biotransformation pathway of textile dye by Cylindrocephalum aurelium. Bioprocess and Biosystems Engineering 42(9): 1483-1494. https://doi.org/10.1007/S00449-019-02144-3

Olivito, F., Jagdale, P. & Oza, G. 2023. Synthesis and biodegradation test of a new polyether polyurethane foam produced from PEG 400, L-lysine ethyl ester diisocyanate (L-LDI) and bis-hydroxymethyl furan (BHMF). Toxics 11(8): 698. https://doi.org/10.3390/toxics11080698

Olivito, F., Algieri, V., Jiritano, A., Tallarida, M.A., Tursi, A., Costanzo, P., Maiuolo, L. & De Nino, A. 2021. Cellulose citrate: A convenient and reusable bio-adsorbent for effective removal of methylene blue dye from artificially contaminated water. RSC Advances 11(54): 34309-34318. https://doi.org/10.1039/D1RA05464C

Oyetade, J.A., Machunda, R.L. & Hilonga, A. 2023. Investigation of functional performance of treatment systems for textile wastewater in selected textile industries in Tanzania. Water Science and Technology 87(3): 584-597. https://doi.org/10.2166/WST.2023.020

Pang, Y.L. & Abdullah, A.Z. 2013. Current status of textile industry wastewater management and research progress in Malaysia: A review. CLEAN – Soil, Air, Water 41(8): 751-764. https://doi.org/10.1002/CLEN.201000318

Pereira, J.C.V., Serbent, M.P. & Skoronski, E. 2021. Application of immobilized mycelium-based pellets for the removal of organochlorine compounds: A review. Water Science and Technology 83(8): 1781-1796. https://doi.org/10.2166/WST.2021.093

Perumal, K., Murugesan, K. & Kalaichelvan, P.T. 2000. Influence of culture parameters on paper mill effluent decolourization by a white rot fungus Ganoderma lucidum. Indian Journal of Experimental Biology 38: 385-389.

Pratiwi, D., Indrianingsih, A.W., Darsih, C. & Hernawan. 2017. Decolorization and degradation of batik dye effluent using Ganoderma lucidum. IOP Conference Series: Earth and Environmental Science 101: 012034. https://doi.org/10.1088/1755-1315/101/1/012034

Przystaś, W., Zabłocka-Godlewska, E. & Grabińska-Sota, E. 2018. Efficiency of decolorization of different dyes using fungal biomass immobilized on different solid supports. Brazilian Journal of Microbiology 49(2): 285-295. https://doi.org/10.1016/J.BJM.2017.06.010

R Ananthashankar, A.G. 2013. Production, characterization and treatment of textile effluents: A critical review. Journal of Chemical Engineering & Process Technology 5(1): 1000182. https://doi.org/10.4172/2157-7048.1000182

Rafaqat, S., Ali, N., Torres, C. & Rittmann, B. 2022. Recent progress in treatment of dyes wastewater using microbial-electro-Fenton technology. RSC Advances 12(27): 17104-17137). https://doi.org/10.1039/d2ra01831d

Rainert, K.T., Nunes, H.C.A., Gonçalves, M.J., Helm, C.V. & Tavares, L.B.B. 2021. Decolorization of the synthetic dye Remazol Brilliant Blue Reactive (RBBR) by Ganoderma lucidum on bio-adsorbent of the solid bleached sulfate paperboard coated with polyethylene terephthalate. Journal of Environmental Chemical Engineering 9(2): 104990. https://doi.org/10.1016/J.JECE.2020.104990

Renu, R., Agarwal, M. & Singh, K. 2023. Simultaneous removal of heavy metals and dye from wastewater: Modelling and experimental study. Water Science and Technology 87(1): 193-217. https://doi.org/10.2166/WST.2022.410

Robinson, T., McMullan, G., Marchant, R. & Nigam, P. 2001. Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresource Technology 77(3): 247-255. https://doi.org/10.1016/S0960-8524(00)00080-8

Sah, M.K., Edbey, K., EL-Hashani, A., Almshety, S., Mauro, L., Alomar, T.S., AlMasoud, N. & Bhattarai, A. 2022. Exploring the biosorption of methylene blue dye onto agricultural products: A critical review. Separations 9(9): 256. https://doi.org/10.3390/SEPARATIONS9090256

Selvakumar, S., Manivasagan, R. & Chinnappan, K. 2013. Biodegradation and decolourization of textile dye wastewater using Ganoderma lucidum. 3 Biotech 3(1): 71-79. https://doi.org/10.1007/s13205-012-0073-5

Shah, M.P. 2018. Azo dye removal technologies. Austin Journal of Biotechnology & Bioengineering 5(1): 1090. www.austinpublishinggroup.com

Syauqiah, I., Nurandini, D., Prihatini, N.P. & Jamiyaturrasidah. 2022. Determination of rice husk activated carbon capacity in adsorption of Cu Metal from Sasirangan liquid waste based on isotherm model. IOP Conference Series: Materials Science and Engineering 1212(1): 012019. https://doi.org/10.1088/1757-899X/1212/1/012019

Singh, C. & Vyas, D. 2022. Biodegradation by fungi for humans and plants nutrition. In Biodegradation Technology of Organic and Inorganic Pollutants. IntechOpen. https://doi.org/10.5772/intechopen.99002

Supramani, S., Ahmad, R., Ilham, Z., Suffian Mohamad Annuar, M., Abd Al Qadr Imad Wan-Mohtar, W. & Klaus, A. 2019a. Optimisation of biomass, exopolysaccharide and intracellular polysaccharide production from the mycelium of an identified Ganoderma lucidum strain QRS 5120 using response surface methodology. AIMS Microbiology 5(1): 19-38. https://doi.org/10.3934/microbiol.2019.1.19

Supramani, S., Jailani, N., Ramarao, K., Mohd Zain, N.A., Klaus, A., Ahmad, R. & Wan-Mohtar, W.A.A.Q.I. 2019b. Pellet diameter and morphology of European Ganoderma pfeifferi in a repeated-batch fermentation for exopolysaccharide production. Biocatalysis and Agricultural Biotechnology 19: 101118. https://doi.org/10.1016/j.bcab.2019.101118

Taufek, N.M., Harith, H.H., Abd Rahim, M.H., Ilham, Z., Rowan, N. & Wan-Mohtar, W.A.A.Q.I. 2020. Performance of mycelial biomass and exopolysaccharide from Malaysian Ganoderma lucidum for the fungivore red hybrid Tilapia (Oreochromis sp.) in Zebrafish embryo. Aquaculture Reports 17: 100322. https://doi.org/10.1016/j.aqrep.2020.100322

Thampraphaphon, B., Phosri, C., Pisutpaisal, N., Thamvithayakorn, P., Chotelersak, K., Sarp, S. & Suwannasai, N. 2022. High potential decolourisation of textile dyes from wastewater by manganese peroxidase production of newly immobilised trametes hirsuta PW17-41 and FTIR analysis. Microorganisms 10(5): 992. https://doi.org/10.3390/MICROORGANISMS10050992

Tiwari, S., Tripathi, A. & Gaur, R. 2017. Bioremediation of plant refuges and xenobiotics. Principles and Applications of Environmental Biotechnology for a Sustainable Future, edited by Singh, R. Singapore: Springer. pp. 85-142. https://doi.org/10.1007/978-981-10-1866-4_4

Usman, M., Adeel, S., Amjad, Z., Bokhari, T.H., Akram, N. & Anam, S. 2022. Biotechnology: The sustainable tool for effective treatment of wastewater. In Microbial Consortium and Biotransformation for Pollution Decontamination, edited by Hamid Dar, G., Ahmad Bhat, R., Qadri, H. & Rehman Hakeem, K. Elsevier. pp. 347-380. https://doi.org/10.1016/B978-0-323-91893-0.00007-9

Usmani, Z., Sharma, M., Lukk, T. & Gupta, V.K. 2021. Role of fungi in bioremediation of soil contaminated with persistent organic compounds. In Industrially Important Fungi for Sustainable Development, edited by Abdel-Azeem, A.M., Yadav, A.N., Yadav, N. & Usmani, Z. Springer. pp. 461-478. https://doi.org/10.1007/978-3-030-67561-5_14

Wan Mohtar, W.A.A.Q.I., Ab. Latif, N., Harvey, L.M. & McNeil, B. 2016. Production of exopolysaccharide by Ganoderma lucidum in a repeated-batch fermentation. Biocatalysis and Agricultural Biotechnology 6: 91-101. https://doi.org/10.1016/j.bcab.2016.02.011

Wang, L., Yu, T., Ma, F., Vitus, T., Bai, S. & Yang, J. 2019. Novel self-immobilized biomass mixture based on mycelium pellets for wastewater treatment: A review. Water Environment Research 91(2): 93-100. https://doi.org/10.1002/WER.1026

Wan-Mohtar, W.A.A.Q.I., Taufek, N.M., Thiran, J.P., Rahman, J.F.P., Yerima, G., Subramaniam, K. & Rowan, N. 2021. Investigations on the use of exopolysaccharide derived from mycelial extract of Ganoderma lucidum as functional feed ingredient for aquaculture-farmed red hybrid Tilapia (Oreochromis sp.). Future Foods 3: 100018. https://doi.org/10.1016/j.fufo.2021.100018

Wan-Mohtar, W.A.A.Q.I., Young, L., Abbott, G.M., Clements, C., Harvey, L.M. & McNeil, B. 2016. Antimicrobial properties and cytotoxicity of sulfated (1,3)-β-D-glucan from the mycelium of the mushroom Ganoderma lucidum. Journal of Microbiology and Biotechnology 26(6): 999-1010. https://doi.org/10.4014/JMB.1510.10018

Wu, H., Xu, X., Qin, Y., Jiang, Y. & Lin, Z. 2022. Study on treatment of acid red G with bio-carbon compound immobilized white rot fungi. Water Science and Technology 85(10): 2945-2963. https://doi.org/10.2166/WST.2022.155

Yang, Q., Xu, R., Wu, P., He, J., Liu, C. & Jiang, W. 2021. Three-step treatment of real complex, variable high-COD rolling wastewater by rational adjustment of acidification, adsorption, and photocatalysis using big data analysis. Separation and Purification Technology 270: 118865. https://doi.org/10.1016/J.SEPPUR.2021.118865

Yesilada, O., Asma, D., & Cing, S. 2003. Decolorization of textile dyes by fungal pellets. Process Biochemistry 38(6): 933–938. https://doi.org/10.1016/S0032-9592(02)00197-8

Zhu, X., Qi, J., Cheng, L., Zhen, G., Lu, X. & Zhang, X. 2022. Depolymerization and conversion of waste-activated sludge to value-added bioproducts by fungi. Fuel 320: 123890. https://doi.org/10.1016/J.FUEL.2022.123890

 

*Corresponding author; email: qadyr@um.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next