Sains Malaysiana 53(7)(2024): 1645-1660
http://doi.org/10.17576/jsm-2024-5307-13
Treatment of
the Textile Wastewater using Malaysian Ganoderma
lucidum Mycelial Pellets
(Rawatan Air
Sisa Tekstil menggunakan Pelet Miselium Ganoderma
lucidum Malaysia)
ZARIMAH MOHD HANAFIAH1,
AMMAR RADZI AZMI1, ZUL ILHAM2, WAN HANNA MELINI WAN
MOHTAR3, SARINA ABDUL HALIM-LIM4, AYU LANA NAFISYAH5,
PAU-LOKE SHOW6 & WAN ABD AL QADR IMAD WAN-MOHTAR1,5,*
1Functional Omics and Bioprocess
Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala
Lumpur, Malaysia
2Environmental Science and Management
Program, Institute of Biological Sciences, Faculty of Science, Universiti
Malaya, 50603 Kuala Lumpur, Malaysia
3Department of Civil Engineering,
Faculty of Engineering and Build Environment, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor, Malaysia
4Operational and Quality Management
Unit, Department of Food Technology, Faculty of Food Science and Technology,
Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
5Department of Aquaculture, Faculty
of Fisheries and Marine, Universitas Airlangga, Campus C, UNAIR Mulyorejo,
Surabaya, East Java 60115, Indonesia
6Chemical and Petroleum Engineering,
Khalifa University of Science and Technology, P O Box 127788, Abu Dhabi, UAE
Received:
29 February 2024/Accepted: 10 June 2024
Abstract
Purification of textile wastewater
using biomass and in particular different fungi is gaining exponential interest
to minimize the impacts of current physical-chemical and biological wastewater
treatment by-products. This study investigates the potential of Malaysian Ganoderma lucidum mycelium pellets (GLMP)
for the decontamination of wastewater samples received from a commercial
textile manufacturer. All studies were performed under ambient temperature
(26-35 ℃) and unsterilized conditions using a simple bioreactor design
(stirred batch bioreactor) for a more practical assimilation of the current
available wastewater treatment process system. The optimal conditions of
adsorption by GLMP were determined by variation effects of adsorbent
concentration (0, 8.75, 12.5 and 25 g/L), pH (unadjusted 7.10 – 8.22, 4 and 6),
and wastewater dilution factor (1:0, 1:4, and 2:3, v/v). This method was proved
to be effective in both decolorization and chemical oxygen demand (COD)
reduction, simultaneously. The most significant percentage of decolorization
observed was 77.24% in a 72 h treatment, whereas COD reductions were 78.32% in
a 36 h treatment. The present study fits both Langmuir and Freundlich
adsorption isotherms as the values of R2 both model were close to 1, indicating the favorable adsorption of dyes towards
Malaysian GLMP.
Keywords: Bio-adsorption; COD;
decontamination; dyes; Ganoderma lucidum; textile wastewater
Abstrak
Pembersihan air sisa tekstil
menggunakan biojisim dan khususnya kulat yang berbeza semakin mendapat minat
untuk meminimumkan impak produk sampingan yang terhasil daripada rawatan air
sisa semasa secara fizikal-kimia dan biologi. Penyelidikan ini mengkaji potensi
pelet miselium Ganoderma lucidum dari
Malaysia (GLMP) untuk mengenyah lumuskan sampel air sisa yang diterima daripada
pengeluar tekstil komersial. Semua kajian dilakukan di bawah suhu ambien (26-35
℃) dan keadaan tidak disterilkan menggunakan reka bentuk bioreaktor
ringkas (bioreaktor kelompok berpengaduk) untuk simulasi yang lebih praktikal
bagi sistem proses rawatan air sisa yang sedia ada. Keadaan optimum penjerapan
oleh GLMP ditentukan oleh kesan variasi kepekatan penjerap (0, 8.75, 12.5 dan
25 g/L), pH (tidak diselaras 7.10 - 8.22, 4 dan 6), dan faktor pencairan air
sisa (1:0, 1:4, dan 2:3, v/v). Kaedah ini terbukti berkesan dalam kedua-dua
penyahwarnaan dan pengurangan permintaan oksigen kimia (COD), secara serentak.
Peratusan penyahwarnaan yang paling ketara diperhatikan ialah 77.24% dalam
rawatan 72 jam, manakala pengurangan COD adalah 78.32% dalam rawatan 36 jam.
Kajian ini sesuai dengan kedua-dua model isoterma penjerapan Langmuir dan
Freundlich kerana nilai R2 kedua-duanya adalah hampir 1, menunjukkan penjerapan yang terbaik bagi pewarna
terhadap GLMP Malaysia.
Kata kunci: Air sisa tekstil;
bio-penjerapan; COD; mengenyah lumuskan; Ganoderma
lucidum; pewarna
REFERENCES
Abdulsalam, K.A., Amodu, B.H.,
Fakorede, O.K., Adelowo, J.M., Onifade, A.P., Olowosaga, F.C., Omikunle, O.D.
& Akintayo, B. 2020. Optimized sorption of methyl orange using
functionalized carob plant pod. J. Chem.
Soc. Nigeria 45(5): 1020-1026.
Ahsan, Z., Kalsoom, U., Bhatti,
H.N., Aftab, K., Khalid, N. & Bilal, M. 2021. Enzyme-assisted
bioremediation approach for synthetic dyes and polycyclic aromatic hydrocarbons
degradation. Journal of Basic
Microbiology 61(11): 960-981. https://doi.org/10.1002/JOBM.202100218
Al-Ghouti, M.A. & Da’ana, D.A.
2020. Guidelines for the use and interpretation of adsorption isotherm models:
A review. Journal of Hazardous Materials 393: 122383. https://doi.org/10.1016/J.JHAZMAT.2020.122383
Asadollahzadeh, M., Mohammadi, M.
& Lennartsson, P.R. 2023. Fungal biotechnology. In Current Developments in Biotechnology and Bioengineering, edited by
Taherzadeh, M.J., Ferreira, J.A. & Pandey, A. Elsevier. pp. 31-66.
https://doi.org/10.1016/B978-0-323-91872-5.00006-5
Bibbins-Martínez, M., Juárez-Hernández,
J., López-Domínguez, J.Y., Nava-Galicia, S.B., Martínez-Tozcano, L.J.,
Juárez-Atonal, R., Cortés-Espinosa, D. & Díaz-Godinez, G. 2023. Potential
application of fungal biosorption and/or bioaccumulation for the bioremediation
of wastewater contamination: A review. Journal
of Environmental Biology 44(4): 135-145.
https://doi.org/10.22438/JEB/44/2/MRN-5093
Birgani, P.M., Ranjbar, N.,
Abdullah, R.C., Wong, K.T., Lee, G., Ibrahim, S., Park, C., Yoon, Y. &
Jang, M. 2016. An efficient and economical treatment for batik textile
wastewater containing high levels of silicate and organic pollutants using a
sequential process of acidification, magnesium oxide, and palm shell-based
activated carbon application. Journal of
Environmental Management 184: 229-239.
https://doi.org/10.1016/J.JENVMAN.2016.09.066
Chen, S.H. & Yien Ting, A.S.
2015. Biodecolorization and biodegradation potential of recalcitrant
triphenylmethane dyes by Coriolopsis sp.
isolated from compost. Journal of
Environmental Management 150: 274-280.
https://doi.org/10.1016/J.JENVMAN.2014.09.014
Cör Andrejč, D., Knez, Ž. &
Knez Marevci, M. 2022. Antioxidant, antibacterial, antitumor, antifungal,
antiviral, anti-inflammatory, and nevro-protective activity of Ganoderma lucidum: An overview. Frontiers in Pharmacology 13: 934982.
https://doi.org/10.3389/FPHAR.2022.934982/BIBTEX
Correa, L.O., Bezerra, A.F.M.,
Honorato, L.R.S., Cortez, A.C.A., Souza, J.V.B. & Souza, E.S. 2021.
Amazonian soil fungi are efficient degraders of glyphosate herbicide; novel isolates
of Penicillium, Aspergillus, and Trichoderma. Brazilian Journal of Biology 83: e242830.
https://doi.org/10.1590/1519-6984.242830
de Farias Silva, C.E., da Silva
Gonçalves, A.H. & de Souza Abud, A.K. 2016. Treatment of textile industry
effluents using orange waste: A proposal to reduce color and chemical oxygen
demand. Water Science and Technology 74(4): 994-1004. https://doi.org/10.2166/wst.2016.298
Espinosa-Ortiz, E.J., Rene, E.R.
& Gerlach, R. 2022. Potential use of fungal-bacterial co-cultures for the
removal of organic pollutants. Critical
Reviews in Biotechnology 42(3): 361-383.
https://doi.org/10.1080/07388551.2021.1940831
Guo, G., Li, X., Tian, F., Liu, T.,
Yang, F., Ding, K., Liu, C., Chen, J. & Wang, C. 2020. Azo dye
decolorization by a halotolerant consortium under microaerophilic conditions. Chemosphere 244: 125510.
https://doi.org/10.1016/J.CHEMOSPHERE.2019.125510
Gupta, V. & Raviya, M.R. 2022.
Microbial degradation of azo dyes using bacteria. In Microbial Remediation of Azo Dyes with Prokaryotes. 1st ed., edited
by Shah, M.P. Boca Raton: CRC Press. pp. 183-197.
Hadibarata, T., Adnan, L.A., Yusoff,
A.R.M., Yuniarto, A., Rubiyatno, Ahmad Zubir, M.M.F., Khudhair, A.B., Teh, Z.C.
& Naser, M.A. 2013. Microbial decolorization of an azo dye reactive black 5
using white-rot fungus Pleurotus eryngii F032. Water, Air, and Soil Pollution 224(6): 1-9. https://doi.org/10.1007/S11270-013-1595-0/METRICS
Hanafiah, Z.M., Wan Mohtar, W.H.M.,
Hasan, H.A., Jensen, H.S., Klaus, A., Sharil, S. & Wan-Mohtar, W.A.A.Q.I.
2022. Ability of Ganoderma lucidum mycelial pellets to remove ammonia and organic matter from domestic wastewater. International Journal of Environmental
Science and Technology 19(8): 7307-7320.
https://doi.org/10.1007/S13762-021-03633-3/METRICS
Idris, A., Hashim, R., Rahman, R.A.,
Ahmad, W.A., Ibrahim, Z., Razak, P.R.A., Zin, H.M. & Bakar, I. 2007.
Application of bioremediation process for textile wastewater treatment using
pilot plant. International Journal of
Engineering and Technology 4(2): 228-234.
Ikehata, K. 2015. Use of fungal
laccases and peroxidases for enzymatic treatment of wastewater containing
synthetic dyes. Green Chemistry for Dyes
Removal from Waste Water: Research Trends and Applications pp. 203-260.
https://doi.org/10.1002/9781118721001.CH6
Karim, M.E., Dhar, K., Moniruzzaman,
M., Hossain, M.U., Das, K.C. & Hossain, M.T. 2020. Decolorization of
synthetic dyes by Aspergillus flavus strain EF-3 isolated from textile dyeing sludge. Bangladesh Journal of Microbiology 37(1): 7-13. https://doi.org/10.3329/BJM.V37I1.51203
Khouni, I., Marrot, B. & Ben
Amar, R. 2012. Treatment of reconstituted textile wastewater containing a
reactive dye in an aerobic sequencing batch reactor using a novel bacterial
consortium. Separation and Purification Technology 87: 110-119. https://doi.org/10.1016/J.SEPPUR.2011.11.030
Koul, B. & Farooq, B. 2020.
Mycotechnology: Utility of fungi in food and beverage industries. In New and Future Developments in Microbial
Biotechnology and Bioengineering, edited by Singh, J. & Gehlot, P.
Elsevier. pp. 133-153. https://doi.org/10.1016/B978-0-12-821007-9.00012-7
Lellis, B., Fávaro-Polonio, C.Z.,
Pamphile, J.A. & Polonio, J.C. 2019. Effects of textile dyes on health and
the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation 3(2): 275-290. https://doi.org/10.1016/J.BIORI.2019.09.001
Li, L., Liang, T., Zhao, M., Lv, Y.,
Song, Z., Sheng, T. & Ma, F. 2022. A review on mycelial pellets as
biological carriers: Wastewater treatment and recovery for resource and energy. Bioresource Technology 355: 127200.
https://doi.org/10.1016/J.BIORTECH.2022.127200
Mohd Hanafiah, Z., Wan Mohtar,
W.H.M., Abu Hasan, H., Jensen, H.S., Klaus, A. & Wan-Mohtar, W.A.A.Q.I.
2019. Performance of wild-Serbian Ganoderma
lucidum mycelium in treating synthetic sewage loading using batch
bioreactor. Scientific Reports 9:
16109. https://doi.org/10.1038/s41598-019-52493-y
Mooralitharan, S., Mohd Hanafiah,
Z., Abd Manan, T.S.B., Muhammad-Sukki, F., Wan-Mohtar, W.A.A.Q.I. & Wan
Mohtar, W.H.M. 2023. Vital conditions to remove pollutants from synthetic
wastewater using Malaysian Ganoderma
lucidum. Sustainability (Switzerland) 15(4): 3819. https://doi.org/10.3390/su15043819
Mostafa, A.A.F., Elshikh, M.S.,
Al-Askar, A.A., Hadibarata, T., Yuniarto, A. & Syafiuddin, A. 2019.
Decolorization and biotransformation pathway of textile dye by Cylindrocephalum aurelium. Bioprocess and Biosystems Engineering 42(9): 1483-1494. https://doi.org/10.1007/S00449-019-02144-3
Olivito, F., Jagdale, P. & Oza,
G. 2023. Synthesis and biodegradation test of a new polyether polyurethane foam
produced from PEG 400, L-lysine ethyl ester diisocyanate (L-LDI) and
bis-hydroxymethyl furan (BHMF). Toxics 11(8): 698. https://doi.org/10.3390/toxics11080698
Olivito, F., Algieri, V., Jiritano,
A., Tallarida, M.A., Tursi, A., Costanzo, P., Maiuolo, L. & De Nino, A.
2021. Cellulose citrate: A convenient and reusable bio-adsorbent for effective
removal of methylene blue dye from artificially contaminated water. RSC Advances 11(54): 34309-34318.
https://doi.org/10.1039/D1RA05464C
Oyetade, J.A., Machunda, R.L. &
Hilonga, A. 2023. Investigation of functional performance of treatment systems
for textile wastewater in selected textile industries in Tanzania. Water Science and Technology 87(3):
584-597. https://doi.org/10.2166/WST.2023.020
Pang, Y.L. & Abdullah, A.Z.
2013. Current status of textile industry wastewater management and research
progress in Malaysia: A review. CLEAN –
Soil, Air, Water 41(8): 751-764. https://doi.org/10.1002/CLEN.201000318
Pereira, J.C.V., Serbent, M.P. &
Skoronski, E. 2021. Application of immobilized mycelium-based pellets for the
removal of organochlorine compounds: A review. Water Science and Technology 83(8): 1781-1796.
https://doi.org/10.2166/WST.2021.093
Perumal, K., Murugesan, K. &
Kalaichelvan, P.T. 2000. Influence of culture parameters on paper mill effluent
decolourization by a white rot fungus Ganoderma
lucidum. Indian Journal of
Experimental Biology 38: 385-389.
Pratiwi, D., Indrianingsih, A.W.,
Darsih, C. & Hernawan. 2017. Decolorization and degradation of batik dye
effluent using Ganoderma lucidum. IOP Conference Series: Earth and
Environmental Science 101: 012034. https://doi.org/10.1088/1755-1315/101/1/012034
Przystaś, W.,
Zabłocka-Godlewska, E. & Grabińska-Sota, E. 2018. Efficiency of
decolorization of different dyes using fungal biomass immobilized on different
solid supports. Brazilian Journal of
Microbiology 49(2): 285-295. https://doi.org/10.1016/J.BJM.2017.06.010
R Ananthashankar, A.G. 2013.
Production, characterization and treatment of textile effluents: A critical
review. Journal of Chemical Engineering
& Process Technology 5(1): 1000182. https://doi.org/10.4172/2157-7048.1000182
Rafaqat, S., Ali, N., Torres, C.
& Rittmann, B. 2022. Recent progress in treatment of dyes wastewater using
microbial-electro-Fenton technology. RSC
Advances 12(27): 17104-17137). https://doi.org/10.1039/d2ra01831d
Rainert, K.T., Nunes, H.C.A.,
Gonçalves, M.J., Helm, C.V. & Tavares, L.B.B. 2021. Decolorization of the
synthetic dye Remazol Brilliant Blue Reactive (RBBR) by Ganoderma lucidum on bio-adsorbent of the solid bleached sulfate
paperboard coated with polyethylene terephthalate. Journal of Environmental Chemical Engineering 9(2): 104990.
https://doi.org/10.1016/J.JECE.2020.104990
Renu, R., Agarwal, M. & Singh,
K. 2023. Simultaneous removal of heavy metals and dye from wastewater:
Modelling and experimental study. Water
Science and Technology 87(1): 193-217. https://doi.org/10.2166/WST.2022.410
Robinson, T., McMullan, G.,
Marchant, R. & Nigam, P. 2001. Remediation of dyes in textile effluent: A
critical review on current treatment technologies with a proposed alternative. Bioresource Technology 77(3): 247-255.
https://doi.org/10.1016/S0960-8524(00)00080-8
Sah, M.K., Edbey, K., EL-Hashani,
A., Almshety, S., Mauro, L., Alomar, T.S., AlMasoud, N. & Bhattarai, A.
2022. Exploring the biosorption of methylene blue dye onto agricultural
products: A critical review. Separations 9(9): 256. https://doi.org/10.3390/SEPARATIONS9090256
Selvakumar, S., Manivasagan, R.
& Chinnappan, K. 2013. Biodegradation and decolourization of textile dye
wastewater using Ganoderma lucidum. 3 Biotech 3(1): 71-79. https://doi.org/10.1007/s13205-012-0073-5
Shah, M.P. 2018. Azo dye removal
technologies. Austin Journal of
Biotechnology & Bioengineering 5(1): 1090.
www.austinpublishinggroup.com
Syauqiah, I., Nurandini, D.,
Prihatini, N.P. & Jamiyaturrasidah. 2022. Determination of rice husk
activated carbon capacity in adsorption of Cu Metal from Sasirangan liquid
waste based on isotherm model. IOP
Conference Series: Materials Science and Engineering 1212(1): 012019. https://doi.org/10.1088/1757-899X/1212/1/012019
Singh, C. & Vyas, D. 2022.
Biodegradation by fungi for humans and plants nutrition. In Biodegradation Technology of Organic and
Inorganic Pollutants. IntechOpen. https://doi.org/10.5772/intechopen.99002
Supramani, S., Ahmad, R., Ilham, Z.,
Suffian Mohamad Annuar, M., Abd Al Qadr Imad Wan-Mohtar, W. & Klaus, A.
2019a. Optimisation of biomass, exopolysaccharide and intracellular
polysaccharide production from the mycelium of an identified Ganoderma lucidum strain QRS 5120 using
response surface methodology. AIMS
Microbiology 5(1): 19-38. https://doi.org/10.3934/microbiol.2019.1.19
Supramani, S., Jailani, N., Ramarao,
K., Mohd Zain, N.A., Klaus, A., Ahmad, R. & Wan-Mohtar, W.A.A.Q.I. 2019b.
Pellet diameter and morphology of European Ganoderma
pfeifferi in a repeated-batch fermentation for exopolysaccharide
production. Biocatalysis and Agricultural
Biotechnology 19: 101118. https://doi.org/10.1016/j.bcab.2019.101118
Taufek, N.M., Harith, H.H., Abd
Rahim, M.H., Ilham, Z., Rowan, N. & Wan-Mohtar, W.A.A.Q.I. 2020.
Performance of mycelial biomass and exopolysaccharide from Malaysian Ganoderma lucidum for the fungivore red
hybrid Tilapia (Oreochromis sp.) in
Zebrafish embryo. Aquaculture Reports 17: 100322. https://doi.org/10.1016/j.aqrep.2020.100322
Thampraphaphon, B., Phosri, C.,
Pisutpaisal, N., Thamvithayakorn, P., Chotelersak, K., Sarp, S. &
Suwannasai, N. 2022. High potential decolourisation of textile dyes from wastewater
by manganese peroxidase production of newly immobilised trametes hirsuta
PW17-41 and FTIR analysis. Microorganisms 10(5): 992. https://doi.org/10.3390/MICROORGANISMS10050992
Tiwari, S., Tripathi, A. & Gaur,
R. 2017. Bioremediation of plant refuges and xenobiotics. Principles and Applications of Environmental Biotechnology for a
Sustainable Future, edited by Singh, R. Singapore: Springer. pp. 85-142.
https://doi.org/10.1007/978-981-10-1866-4_4
Usman, M., Adeel, S., Amjad, Z.,
Bokhari, T.H., Akram, N. & Anam, S. 2022. Biotechnology: The sustainable
tool for effective treatment of wastewater. In Microbial Consortium and Biotransformation for Pollution
Decontamination, edited by Hamid Dar, G., Ahmad Bhat, R., Qadri, H. &
Rehman Hakeem, K. Elsevier. pp. 347-380.
https://doi.org/10.1016/B978-0-323-91893-0.00007-9
Usmani, Z., Sharma, M., Lukk, T.
& Gupta, V.K. 2021. Role of fungi in bioremediation of soil contaminated
with persistent organic compounds. In Industrially
Important Fungi for Sustainable Development, edited by Abdel-Azeem, A.M.,
Yadav, A.N., Yadav, N. & Usmani, Z. Springer. pp. 461-478.
https://doi.org/10.1007/978-3-030-67561-5_14
Wan Mohtar, W.A.A.Q.I., Ab. Latif,
N., Harvey, L.M. & McNeil, B. 2016. Production of exopolysaccharide by Ganoderma lucidum in a repeated-batch
fermentation. Biocatalysis and
Agricultural Biotechnology 6: 91-101.
https://doi.org/10.1016/j.bcab.2016.02.011
Wang, L., Yu, T., Ma, F., Vitus, T.,
Bai, S. & Yang, J. 2019. Novel self-immobilized biomass mixture based on
mycelium pellets for wastewater treatment: A review. Water Environment Research 91(2): 93-100.
https://doi.org/10.1002/WER.1026
Wan-Mohtar, W.A.A.Q.I., Taufek,
N.M., Thiran, J.P., Rahman, J.F.P., Yerima, G., Subramaniam, K. & Rowan, N.
2021. Investigations on the use of exopolysaccharide derived from mycelial
extract of Ganoderma lucidum as
functional feed ingredient for aquaculture-farmed red hybrid Tilapia (Oreochromis sp.). Future Foods 3: 100018. https://doi.org/10.1016/j.fufo.2021.100018
Wan-Mohtar, W.A.A.Q.I., Young, L.,
Abbott, G.M., Clements, C., Harvey, L.M. & McNeil, B. 2016. Antimicrobial
properties and cytotoxicity of sulfated (1,3)-β-D-glucan from the mycelium
of the mushroom Ganoderma lucidum. Journal of Microbiology and Biotechnology 26(6): 999-1010. https://doi.org/10.4014/JMB.1510.10018
Wu, H., Xu, X., Qin, Y., Jiang, Y.
& Lin, Z. 2022. Study on treatment of acid red G with bio-carbon compound
immobilized white rot fungi. Water
Science and Technology 85(10): 2945-2963. https://doi.org/10.2166/WST.2022.155
Yang, Q., Xu, R., Wu, P., He, J.,
Liu, C. & Jiang, W. 2021. Three-step treatment of real complex, variable
high-COD rolling wastewater by rational adjustment of acidification,
adsorption, and photocatalysis using big data analysis. Separation and Purification Technology 270: 118865.
https://doi.org/10.1016/J.SEPPUR.2021.118865
Yesilada, O., Asma, D., & Cing, S. 2003. Decolorization of textile dyes by fungal pellets. Process Biochemistry 38(6): 933–938. https://doi.org/10.1016/S0032-9592(02)00197-8
Zhu, X., Qi, J., Cheng, L., Zhen,
G., Lu, X. & Zhang, X. 2022. Depolymerization and conversion of
waste-activated sludge to value-added bioproducts by fungi. Fuel 320: 123890. https://doi.org/10.1016/J.FUEL.2022.123890
*Corresponding
author; email: qadyr@um.edu.my
|